Metamath Proof Explorer


Theorem lspssid

Description: A set of vectors is a subset of its span. ( spanss2 analog.) (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspss.v V = Base W
lspss.n N = LSpan W
Assertion lspssid W LMod U V U N U

Proof

Step Hyp Ref Expression
1 lspss.v V = Base W
2 lspss.n N = LSpan W
3 ssintub U t LSubSp W | U t
4 eqid LSubSp W = LSubSp W
5 1 4 2 lspval W LMod U V N U = t LSubSp W | U t
6 3 5 sseqtrrid W LMod U V U N U