Metamath Proof Explorer


Theorem lspssp

Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014)

Ref Expression
Hypotheses lspssp.s S = LSubSp W
lspssp.n N = LSpan W
Assertion lspssp W LMod U S T U N T U

Proof

Step Hyp Ref Expression
1 lspssp.s S = LSubSp W
2 lspssp.n N = LSpan W
3 eqid Base W = Base W
4 3 1 lssss U S U Base W
5 3 2 lspss W LMod U Base W T U N T N U
6 4 5 syl3an2 W LMod U S T U N T N U
7 1 2 lspid W LMod U S N U = U
8 7 3adant3 W LMod U S T U N U = U
9 6 8 sseqtrd W LMod U S T U N T U