Metamath Proof Explorer


Theorem lsptpcl

Description: The span of an unordered triple is a subspace (frequently used special case of lspcl ). (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses lspval.v V = Base W
lspval.s S = LSubSp W
lspval.n N = LSpan W
lspprcl.w φ W LMod
lspprcl.x φ X V
lspprcl.y φ Y V
lsptpcl.z φ Z V
Assertion lsptpcl φ N X Y Z S

Proof

Step Hyp Ref Expression
1 lspval.v V = Base W
2 lspval.s S = LSubSp W
3 lspval.n N = LSpan W
4 lspprcl.w φ W LMod
5 lspprcl.x φ X V
6 lspprcl.y φ Y V
7 lsptpcl.z φ Z V
8 df-tp X Y Z = X Y Z
9 5 6 prssd φ X Y V
10 7 snssd φ Z V
11 9 10 unssd φ X Y Z V
12 8 11 eqsstrid φ X Y Z V
13 1 2 3 lspcl W LMod X Y Z V N X Y Z S
14 4 12 13 syl2anc φ N X Y Z S