Step |
Hyp |
Ref |
Expression |
1 |
|
lss1d.v |
|
2 |
|
lss1d.f |
|
3 |
|
lss1d.t |
|
4 |
|
lss1d.k |
|
5 |
|
lss1d.s |
|
6 |
2
|
a1i |
|
7 |
4
|
a1i |
|
8 |
1
|
a1i |
|
9 |
|
eqidd |
|
10 |
3
|
a1i |
|
11 |
5
|
a1i |
|
12 |
1 2 3 4
|
lmodvscl |
|
13 |
12
|
3expa |
|
14 |
13
|
an32s |
|
15 |
|
eleq1a |
|
16 |
14 15
|
syl |
|
17 |
16
|
rexlimdva |
|
18 |
17
|
abssdv |
|
19 |
|
eqid |
|
20 |
2 4 19
|
lmod0cl |
|
21 |
20
|
adantr |
|
22 |
|
nfcv |
|
23 |
|
nfre1 |
|
24 |
23
|
nfab |
|
25 |
|
nfcv |
|
26 |
24 25
|
nfne |
|
27 |
|
biidd |
|
28 |
|
ovex |
|
29 |
28
|
elabrex |
|
30 |
29
|
ne0d |
|
31 |
22 26 27 30
|
vtoclgaf |
|
32 |
21 31
|
syl |
|
33 |
|
vex |
|
34 |
|
eqeq1 |
|
35 |
34
|
rexbidv |
|
36 |
33 35
|
elab |
|
37 |
|
oveq1 |
|
38 |
37
|
eqeq2d |
|
39 |
38
|
cbvrexvw |
|
40 |
36 39
|
bitri |
|
41 |
|
vex |
|
42 |
|
eqeq1 |
|
43 |
42
|
rexbidv |
|
44 |
41 43
|
elab |
|
45 |
|
oveq1 |
|
46 |
45
|
eqeq2d |
|
47 |
46
|
cbvrexvw |
|
48 |
44 47
|
bitri |
|
49 |
40 48
|
anbi12i |
|
50 |
|
reeanv |
|
51 |
49 50
|
bitr4i |
|
52 |
|
simpll |
|
53 |
|
simprr |
|
54 |
|
simprll |
|
55 |
|
eqid |
|
56 |
2 4 55
|
lmodmcl |
|
57 |
52 53 54 56
|
syl3anc |
|
58 |
|
simprlr |
|
59 |
|
eqid |
|
60 |
2 4 59
|
lmodacl |
|
61 |
52 57 58 60
|
syl3anc |
|
62 |
|
simplr |
|
63 |
|
eqid |
|
64 |
1 63 2 3 4 59
|
lmodvsdir |
|
65 |
52 57 58 62 64
|
syl13anc |
|
66 |
1 2 3 4 55
|
lmodvsass |
|
67 |
52 53 54 62 66
|
syl13anc |
|
68 |
67
|
oveq1d |
|
69 |
65 68
|
eqtr2d |
|
70 |
|
oveq1 |
|
71 |
70
|
rspceeqv |
|
72 |
61 69 71
|
syl2anc |
|
73 |
|
oveq2 |
|
74 |
|
oveq12 |
|
75 |
73 74
|
sylan |
|
76 |
75
|
eqeq1d |
|
77 |
76
|
rexbidv |
|
78 |
72 77
|
syl5ibrcom |
|
79 |
78
|
expr |
|
80 |
79
|
com23 |
|
81 |
80
|
rexlimdvva |
|
82 |
51 81
|
syl5bi |
|
83 |
82
|
expcomd |
|
84 |
83
|
com24 |
|
85 |
84
|
3imp2 |
|
86 |
|
ovex |
|
87 |
|
eqeq1 |
|
88 |
87
|
rexbidv |
|
89 |
86 88
|
elab |
|
90 |
85 89
|
sylibr |
|
91 |
6 7 8 9 10 11 18 32 90
|
islssd |
|