Metamath Proof Explorer


Theorem lssatomic

Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. ( shatomici analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lssatomic.s S = LSubSp W
lssatomic.o 0 ˙ = 0 W
lssatomic.a A = LSAtoms W
lssatomic.w φ W LMod
lssatomic.u φ U S
lssatomic.n φ U 0 ˙
Assertion lssatomic φ q A q U

Proof

Step Hyp Ref Expression
1 lssatomic.s S = LSubSp W
2 lssatomic.o 0 ˙ = 0 W
3 lssatomic.a A = LSAtoms W
4 lssatomic.w φ W LMod
5 lssatomic.u φ U S
6 lssatomic.n φ U 0 ˙
7 2 1 lssne0 U S U 0 ˙ x U x 0 ˙
8 5 7 syl φ U 0 ˙ x U x 0 ˙
9 6 8 mpbid φ x U x 0 ˙
10 4 3ad2ant1 φ x U x 0 ˙ W LMod
11 5 3ad2ant1 φ x U x 0 ˙ U S
12 simp2 φ x U x 0 ˙ x U
13 eqid Base W = Base W
14 13 1 lssel U S x U x Base W
15 11 12 14 syl2anc φ x U x 0 ˙ x Base W
16 simp3 φ x U x 0 ˙ x 0 ˙
17 eqid LSpan W = LSpan W
18 13 17 2 3 lsatlspsn2 W LMod x Base W x 0 ˙ LSpan W x A
19 10 15 16 18 syl3anc φ x U x 0 ˙ LSpan W x A
20 1 17 10 11 12 lspsnel5a φ x U x 0 ˙ LSpan W x U
21 sseq1 q = LSpan W x q U LSpan W x U
22 21 rspcev LSpan W x A LSpan W x U q A q U
23 19 20 22 syl2anc φ x U x 0 ˙ q A q U
24 23 rexlimdv3a φ x U x 0 ˙ q A q U
25 9 24 mpd φ q A q U