Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssats2.s | |
|
| lssats2.n | |
||
| lssats2.w | |
||
| lssats2.u | |
||
| Assertion | lssats2 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssats2.s | |
|
| 2 | lssats2.n | |
|
| 3 | lssats2.w | |
|
| 4 | lssats2.u | |
|
| 5 | simpr | |
|
| 6 | 3 | adantr | |
| 7 | eqid | |
|
| 8 | 7 1 | lssel | |
| 9 | 4 8 | sylan | |
| 10 | 7 2 | lspsnid | |
| 11 | 6 9 10 | syl2anc | |
| 12 | sneq | |
|
| 13 | 12 | fveq2d | |
| 14 | 13 | eleq2d | |
| 15 | 14 | rspcev | |
| 16 | 5 11 15 | syl2anc | |
| 17 | 16 | ex | |
| 18 | 3 | adantr | |
| 19 | 4 | adantr | |
| 20 | simpr | |
|
| 21 | 1 2 18 19 20 | ellspsn5 | |
| 22 | 21 | sseld | |
| 23 | 22 | rexlimdva | |
| 24 | 17 23 | impbid | |
| 25 | eliun | |
|
| 26 | 24 25 | bitr4di | |
| 27 | 26 | eqrdv | |