Metamath Proof Explorer


Theorem lssbn

Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses lssbn.x X = W 𝑠 U
lssbn.s S = LSubSp W
lssbn.j J = TopOpen W
Assertion lssbn W Ban U S X Ban U Clsd J

Proof

Step Hyp Ref Expression
1 lssbn.x X = W 𝑠 U
2 lssbn.s S = LSubSp W
3 lssbn.j J = TopOpen W
4 bnnvc W Ban W NrmVec
5 1 2 lssnvc W NrmVec U S X NrmVec
6 4 5 sylan W Ban U S X NrmVec
7 eqid Scalar W = Scalar W
8 1 7 resssca U S Scalar W = Scalar X
9 8 adantl W Ban U S Scalar W = Scalar X
10 7 bnsca W Ban Scalar W CMetSp
11 10 adantr W Ban U S Scalar W CMetSp
12 9 11 eqeltrrd W Ban U S Scalar X CMetSp
13 eqid Scalar X = Scalar X
14 13 isbn X Ban X NrmVec X CMetSp Scalar X CMetSp
15 3anan32 X NrmVec X CMetSp Scalar X CMetSp X NrmVec Scalar X CMetSp X CMetSp
16 14 15 bitri X Ban X NrmVec Scalar X CMetSp X CMetSp
17 16 baib X NrmVec Scalar X CMetSp X Ban X CMetSp
18 6 12 17 syl2anc W Ban U S X Ban X CMetSp
19 bncms W Ban W CMetSp
20 eqid Base W = Base W
21 20 2 lssss U S U Base W
22 1 20 3 cmsss W CMetSp U Base W X CMetSp U Clsd J
23 19 21 22 syl2an W Ban U S X CMetSp U Clsd J
24 18 23 bitrd W Ban U S X Ban U Clsd J