Step |
Hyp |
Ref |
Expression |
1 |
|
lssintcl.s |
|
2 |
|
eqidd |
|
3 |
|
eqidd |
|
4 |
|
eqidd |
|
5 |
|
eqidd |
|
6 |
|
eqidd |
|
7 |
1
|
a1i |
|
8 |
|
intssuni2 |
|
9 |
8
|
3adant1 |
|
10 |
|
eqid |
|
11 |
10 1
|
lssss |
|
12 |
|
velpw |
|
13 |
11 12
|
sylibr |
|
14 |
13
|
ssriv |
|
15 |
|
sspwuni |
|
16 |
14 15
|
mpbi |
|
17 |
9 16
|
sstrdi |
|
18 |
|
simpl1 |
|
19 |
|
simp2 |
|
20 |
19
|
sselda |
|
21 |
|
eqid |
|
22 |
21 1
|
lss0cl |
|
23 |
18 20 22
|
syl2anc |
|
24 |
23
|
ralrimiva |
|
25 |
|
fvex |
|
26 |
25
|
elint2 |
|
27 |
24 26
|
sylibr |
|
28 |
27
|
ne0d |
|
29 |
20
|
adantlr |
|
30 |
|
simplr1 |
|
31 |
|
simplr2 |
|
32 |
|
simpr |
|
33 |
|
elinti |
|
34 |
31 32 33
|
sylc |
|
35 |
|
simplr3 |
|
36 |
|
elinti |
|
37 |
35 32 36
|
sylc |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
38 39 40 41 1
|
lsscl |
|
43 |
29 30 34 37 42
|
syl13anc |
|
44 |
43
|
ralrimiva |
|
45 |
|
ovex |
|
46 |
45
|
elint2 |
|
47 |
44 46
|
sylibr |
|
48 |
2 3 4 5 6 7 17 28 47
|
islssd |
|