Description: No subspace is smaller than the zero subspace. ( shle0 analog.) (Contributed by NM, 20-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lss0cl.z | ||
lss0cl.s | |||
Assertion | lssle0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lss0cl.z | ||
2 | lss0cl.s | ||
3 | 1 2 | lss0ss | |
4 | 3 | biantrud | |
5 | eqss | ||
6 | 4 5 | bitr4di |