Metamath Proof Explorer


Theorem lsslinds

Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses lsslindf.u U = LSubSp W
lsslindf.x X = W 𝑠 S
Assertion lsslinds W LMod S U F S F LIndS X F LIndS W

Proof

Step Hyp Ref Expression
1 lsslindf.u U = LSubSp W
2 lsslindf.x X = W 𝑠 S
3 eqid Base W = Base W
4 3 1 lssss S U S Base W
5 2 3 ressbas2 S Base W S = Base X
6 4 5 syl S U S = Base X
7 6 3ad2ant2 W LMod S U F S S = Base X
8 7 sseq2d W LMod S U F S F S F Base X
9 4 3ad2ant2 W LMod S U F S S Base W
10 sstr2 F S S Base W F Base W
11 9 10 mpan9 W LMod S U F S F S F Base W
12 simpl3 W LMod S U F S F Base W F S
13 11 12 impbida W LMod S U F S F S F Base W
14 8 13 bitr3d W LMod S U F S F Base X F Base W
15 rnresi ran I F = F
16 15 sseq1i ran I F S F S
17 1 2 lsslindf W LMod S U ran I F S I F LIndF X I F LIndF W
18 16 17 syl3an3br W LMod S U F S I F LIndF X I F LIndF W
19 14 18 anbi12d W LMod S U F S F Base X I F LIndF X F Base W I F LIndF W
20 2 ovexi X V
21 eqid Base X = Base X
22 21 islinds X V F LIndS X F Base X I F LIndF X
23 20 22 mp1i W LMod S U F S F LIndS X F Base X I F LIndF X
24 3 islinds W LMod F LIndS W F Base W I F LIndF W
25 24 3ad2ant1 W LMod S U F S F LIndS W F Base W I F LIndF W
26 19 23 25 3bitr4d W LMod S U F S F LIndS X F LIndS W