Metamath Proof Explorer


Theorem lsslmod

Description: A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypotheses lsslss.x X = W 𝑠 U
lsslss.s S = LSubSp W
Assertion lsslmod W LMod U S X LMod

Proof

Step Hyp Ref Expression
1 lsslss.x X = W 𝑠 U
2 lsslss.s S = LSubSp W
3 eqid Base W = Base W
4 1 3 2 islss3 W LMod U S U Base W X LMod
5 4 simplbda W LMod U S X LMod