Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
lsslmod
Next ⟩
lsslss
Metamath Proof Explorer
Ascii
Unicode
Theorem
lsslmod
Description:
A submodule is a module.
(Contributed by
Stefan O'Rear
, 12-Dec-2014)
Ref
Expression
Hypotheses
lsslss.x
⊢
X
=
W
↾
𝑠
U
lsslss.s
⊢
S
=
LSubSp
⁡
W
Assertion
lsslmod
⊢
W
∈
LMod
∧
U
∈
S
→
X
∈
LMod
Proof
Step
Hyp
Ref
Expression
1
lsslss.x
⊢
X
=
W
↾
𝑠
U
2
lsslss.s
⊢
S
=
LSubSp
⁡
W
3
eqid
⊢
Base
W
=
Base
W
4
1
3
2
islss3
⊢
W
∈
LMod
→
U
∈
S
↔
U
⊆
Base
W
∧
X
∈
LMod
5
4
simplbda
⊢
W
∈
LMod
∧
U
∈
S
→
X
∈
LMod