Metamath Proof Explorer


Theorem lsslsp

Description: Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014) Terms in the equation were swapped as proposed by NM on 15-Mar-2015. (Revised by AV, 18-Apr-2025)

Ref Expression
Hypotheses lsslsp.x X = W 𝑠 U
lsslsp.m M = LSpan W
lsslsp.n N = LSpan X
lsslsp.l L = LSubSp W
Assertion lsslsp W LMod U L G U N G = M G

Proof

Step Hyp Ref Expression
1 lsslsp.x X = W 𝑠 U
2 lsslsp.m M = LSpan W
3 lsslsp.n N = LSpan X
4 lsslsp.l L = LSubSp W
5 1 4 lsslmod W LMod U L X LMod
6 5 3adant3 W LMod U L G U X LMod
7 simp1 W LMod U L G U W LMod
8 simp3 W LMod U L G U G U
9 eqid Base W = Base W
10 9 4 lssss U L U Base W
11 10 3ad2ant2 W LMod U L G U U Base W
12 8 11 sstrd W LMod U L G U G Base W
13 9 4 2 lspcl W LMod G Base W M G L
14 7 12 13 syl2anc W LMod U L G U M G L
15 4 2 lspssp W LMod U L G U M G U
16 eqid LSubSp X = LSubSp X
17 1 4 16 lsslss W LMod U L M G LSubSp X M G L M G U
18 17 3adant3 W LMod U L G U M G LSubSp X M G L M G U
19 14 15 18 mpbir2and W LMod U L G U M G LSubSp X
20 9 2 lspssid W LMod G Base W G M G
21 7 12 20 syl2anc W LMod U L G U G M G
22 16 3 lspssp X LMod M G LSubSp X G M G N G M G
23 6 19 21 22 syl3anc W LMod U L G U N G M G
24 1 9 ressbas2 U Base W U = Base X
25 11 24 syl W LMod U L G U U = Base X
26 8 25 sseqtrd W LMod U L G U G Base X
27 eqid Base X = Base X
28 27 16 3 lspcl X LMod G Base X N G LSubSp X
29 6 26 28 syl2anc W LMod U L G U N G LSubSp X
30 1 4 16 lsslss W LMod U L N G LSubSp X N G L N G U
31 30 3adant3 W LMod U L G U N G LSubSp X N G L N G U
32 29 31 mpbid W LMod U L G U N G L N G U
33 32 simpld W LMod U L G U N G L
34 27 3 lspssid X LMod G Base X G N G
35 6 26 34 syl2anc W LMod U L G U G N G
36 4 2 lspssp W LMod N G L G N G M G N G
37 7 33 35 36 syl3anc W LMod U L G U M G N G
38 23 37 eqssd W LMod U L G U N G = M G