Step |
Hyp |
Ref |
Expression |
1 |
|
lsslsp.x |
|
2 |
|
lsslsp.m |
|
3 |
|
lsslsp.n |
|
4 |
|
lsslsp.l |
|
5 |
|
simp1 |
|
6 |
1 4
|
lsslmod |
|
7 |
6
|
3adant3 |
|
8 |
|
simp3 |
|
9 |
|
eqid |
|
10 |
9 4
|
lssss |
|
11 |
10
|
3ad2ant2 |
|
12 |
1 9
|
ressbas2 |
|
13 |
11 12
|
syl |
|
14 |
8 13
|
sseqtrd |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
15 16 3
|
lspcl |
|
18 |
7 14 17
|
syl2anc |
|
19 |
1 4 16
|
lsslss |
|
20 |
19
|
3adant3 |
|
21 |
18 20
|
mpbid |
|
22 |
21
|
simpld |
|
23 |
15 3
|
lspssid |
|
24 |
7 14 23
|
syl2anc |
|
25 |
4 2
|
lspssp |
|
26 |
5 22 24 25
|
syl3anc |
|
27 |
8 11
|
sstrd |
|
28 |
9 4 2
|
lspcl |
|
29 |
5 27 28
|
syl2anc |
|
30 |
4 2
|
lspssp |
|
31 |
1 4 16
|
lsslss |
|
32 |
31
|
3adant3 |
|
33 |
29 30 32
|
mpbir2and |
|
34 |
9 2
|
lspssid |
|
35 |
5 27 34
|
syl2anc |
|
36 |
16 3
|
lspssp |
|
37 |
7 33 35 36
|
syl3anc |
|
38 |
26 37
|
eqssd |
|