| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsslsp.x |
|
| 2 |
|
lsslsp.m |
|
| 3 |
|
lsslsp.n |
|
| 4 |
|
lsslsp.l |
|
| 5 |
|
simp1 |
|
| 6 |
1 4
|
lsslmod |
|
| 7 |
6
|
3adant3 |
|
| 8 |
|
simp3 |
|
| 9 |
|
eqid |
|
| 10 |
9 4
|
lssss |
|
| 11 |
10
|
3ad2ant2 |
|
| 12 |
1 9
|
ressbas2 |
|
| 13 |
11 12
|
syl |
|
| 14 |
8 13
|
sseqtrd |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
15 16 3
|
lspcl |
|
| 18 |
7 14 17
|
syl2anc |
|
| 19 |
1 4 16
|
lsslss |
|
| 20 |
19
|
3adant3 |
|
| 21 |
18 20
|
mpbid |
|
| 22 |
21
|
simpld |
|
| 23 |
15 3
|
lspssid |
|
| 24 |
7 14 23
|
syl2anc |
|
| 25 |
4 2
|
lspssp |
|
| 26 |
5 22 24 25
|
syl3anc |
|
| 27 |
8 11
|
sstrd |
|
| 28 |
9 4 2
|
lspcl |
|
| 29 |
5 27 28
|
syl2anc |
|
| 30 |
4 2
|
lspssp |
|
| 31 |
1 4 16
|
lsslss |
|
| 32 |
31
|
3adant3 |
|
| 33 |
29 30 32
|
mpbir2and |
|
| 34 |
9 2
|
lspssid |
|
| 35 |
5 27 34
|
syl2anc |
|
| 36 |
16 3
|
lspssp |
|
| 37 |
7 33 35 36
|
syl3anc |
|
| 38 |
26 37
|
eqssd |
|