Database
BASIC ALGEBRAIC STRUCTURES
Vector spaces
Definition and basic properties
lsslvec
Next ⟩
lvecvs0or
Metamath Proof Explorer
Ascii
Unicode
Theorem
lsslvec
Description:
A vector subspace is a vector space.
(Contributed by
NM
, 14-Mar-2015)
Ref
Expression
Hypotheses
lsslvec.x
⊢
X
=
W
↾
𝑠
U
lsslvec.s
⊢
S
=
LSubSp
⁡
W
Assertion
lsslvec
⊢
W
∈
LVec
∧
U
∈
S
→
X
∈
LVec
Proof
Step
Hyp
Ref
Expression
1
lsslvec.x
⊢
X
=
W
↾
𝑠
U
2
lsslvec.s
⊢
S
=
LSubSp
⁡
W
3
lveclmod
⊢
W
∈
LVec
→
W
∈
LMod
4
1
2
lsslmod
⊢
W
∈
LMod
∧
U
∈
S
→
X
∈
LMod
5
3
4
sylan
⊢
W
∈
LVec
∧
U
∈
S
→
X
∈
LMod
6
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
7
1
6
resssca
⊢
U
∈
S
→
Scalar
⁡
W
=
Scalar
⁡
X
8
7
adantl
⊢
W
∈
LVec
∧
U
∈
S
→
Scalar
⁡
W
=
Scalar
⁡
X
9
6
lvecdrng
⊢
W
∈
LVec
→
Scalar
⁡
W
∈
DivRing
10
9
adantr
⊢
W
∈
LVec
∧
U
∈
S
→
Scalar
⁡
W
∈
DivRing
11
8
10
eqeltrrd
⊢
W
∈
LVec
∧
U
∈
S
→
Scalar
⁡
X
∈
DivRing
12
eqid
⊢
Scalar
⁡
X
=
Scalar
⁡
X
13
12
islvec
⊢
X
∈
LVec
↔
X
∈
LMod
∧
Scalar
⁡
X
∈
DivRing
14
5
11
13
sylanbrc
⊢
W
∈
LVec
∧
U
∈
S
→
X
∈
LVec