Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
lssneln0
Metamath Proof Explorer
Description: A vector X which doesn't belong to a subspace U is nonzero.
(Contributed by NM , 14-May-2015) (Revised by AV , 17-Jul-2022) (Proof
shortened by AV , 19-Jul-2022)
Ref
Expression
Hypotheses
lssneln0.o
⊢ 0 ˙ = 0 W
lssneln0.s
⊢ S = LSubSp ⁡ W
lssneln0.w
⊢ φ → W ∈ LMod
lssneln0.u
⊢ φ → U ∈ S
lssneln0.x
⊢ φ → X ∈ V
lssneln0.n
⊢ φ → ¬ X ∈ U
Assertion
lssneln0
⊢ φ → X ∈ V ∖ 0 ˙
Proof
Step
Hyp
Ref
Expression
1
lssneln0.o
⊢ 0 ˙ = 0 W
2
lssneln0.s
⊢ S = LSubSp ⁡ W
3
lssneln0.w
⊢ φ → W ∈ LMod
4
lssneln0.u
⊢ φ → U ∈ S
5
lssneln0.x
⊢ φ → X ∈ V
6
lssneln0.n
⊢ φ → ¬ X ∈ U
7
1 2 3 4 6
lssvneln0
⊢ φ → X ≠ 0 ˙
8
eldifsn
⊢ X ∈ V ∖ 0 ˙ ↔ X ∈ V ∧ X ≠ 0 ˙
9
5 7 8
sylanbrc
⊢ φ → X ∈ V ∖ 0 ˙