Metamath Proof Explorer


Theorem lssneln0

Description: A vector X which doesn't belong to a subspace U is nonzero. (Contributed by NM, 14-May-2015) (Revised by AV, 17-Jul-2022) (Proof shortened by AV, 19-Jul-2022)

Ref Expression
Hypotheses lssneln0.o 0 ˙ = 0 W
lssneln0.s S = LSubSp W
lssneln0.w φ W LMod
lssneln0.u φ U S
lssneln0.x φ X V
lssneln0.n φ ¬ X U
Assertion lssneln0 φ X V 0 ˙

Proof

Step Hyp Ref Expression
1 lssneln0.o 0 ˙ = 0 W
2 lssneln0.s S = LSubSp W
3 lssneln0.w φ W LMod
4 lssneln0.u φ U S
5 lssneln0.x φ X V
6 lssneln0.n φ ¬ X U
7 1 2 3 4 6 lssvneln0 φ X 0 ˙
8 eldifsn X V 0 ˙ X V X 0 ˙
9 5 7 8 sylanbrc φ X V 0 ˙