Metamath Proof Explorer


Theorem lsspropd

Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses lsspropd.b1 φ B = Base K
lsspropd.b2 φ B = Base L
lsspropd.w φ B W
lsspropd.p φ x W y W x + K y = x + L y
lsspropd.s1 φ x P y B x K y W
lsspropd.s2 φ x P y B x K y = x L y
lsspropd.p1 φ P = Base Scalar K
lsspropd.p2 φ P = Base Scalar L
Assertion lsspropd φ LSubSp K = LSubSp L

Proof

Step Hyp Ref Expression
1 lsspropd.b1 φ B = Base K
2 lsspropd.b2 φ B = Base L
3 lsspropd.w φ B W
4 lsspropd.p φ x W y W x + K y = x + L y
5 lsspropd.s1 φ x P y B x K y W
6 lsspropd.s2 φ x P y B x K y = x L y
7 lsspropd.p1 φ P = Base Scalar K
8 lsspropd.p2 φ P = Base Scalar L
9 simpll φ s B z P a s b s φ
10 simprl φ s B z P a s b s z P
11 simplr φ s B z P a s b s s B
12 simprrl φ s B z P a s b s a s
13 11 12 sseldd φ s B z P a s b s a B
14 5 ralrimivva φ x P y B x K y W
15 14 ad2antrr φ s B z P a s b s x P y B x K y W
16 ovrspc2v z P a B x P y B x K y W z K a W
17 10 13 15 16 syl21anc φ s B z P a s b s z K a W
18 3 ad2antrr φ s B z P a s b s B W
19 simprrr φ s B z P a s b s b s
20 11 19 sseldd φ s B z P a s b s b B
21 18 20 sseldd φ s B z P a s b s b W
22 4 oveqrspc2v φ z K a W b W z K a + K b = z K a + L b
23 9 17 21 22 syl12anc φ s B z P a s b s z K a + K b = z K a + L b
24 6 oveqrspc2v φ z P a B z K a = z L a
25 9 10 13 24 syl12anc φ s B z P a s b s z K a = z L a
26 25 oveq1d φ s B z P a s b s z K a + L b = z L a + L b
27 23 26 eqtrd φ s B z P a s b s z K a + K b = z L a + L b
28 27 eleq1d φ s B z P a s b s z K a + K b s z L a + L b s
29 28 anassrs φ s B z P a s b s z K a + K b s z L a + L b s
30 29 2ralbidva φ s B z P a s b s z K a + K b s a s b s z L a + L b s
31 30 ralbidva φ s B z P a s b s z K a + K b s z P a s b s z L a + L b s
32 31 anbi2d φ s B s z P a s b s z K a + K b s s z P a s b s z L a + L b s
33 32 pm5.32da φ s B s z P a s b s z K a + K b s s B s z P a s b s z L a + L b s
34 3anass s B s z P a s b s z K a + K b s s B s z P a s b s z K a + K b s
35 3anass s B s z P a s b s z L a + L b s s B s z P a s b s z L a + L b s
36 33 34 35 3bitr4g φ s B s z P a s b s z K a + K b s s B s z P a s b s z L a + L b s
37 1 sseq2d φ s B s Base K
38 7 raleqdv φ z P a s b s z K a + K b s z Base Scalar K a s b s z K a + K b s
39 37 38 3anbi13d φ s B s z P a s b s z K a + K b s s Base K s z Base Scalar K a s b s z K a + K b s
40 2 sseq2d φ s B s Base L
41 8 raleqdv φ z P a s b s z L a + L b s z Base Scalar L a s b s z L a + L b s
42 40 41 3anbi13d φ s B s z P a s b s z L a + L b s s Base L s z Base Scalar L a s b s z L a + L b s
43 36 39 42 3bitr3d φ s Base K s z Base Scalar K a s b s z K a + K b s s Base L s z Base Scalar L a s b s z L a + L b s
44 eqid Scalar K = Scalar K
45 eqid Base Scalar K = Base Scalar K
46 eqid Base K = Base K
47 eqid + K = + K
48 eqid K = K
49 eqid LSubSp K = LSubSp K
50 44 45 46 47 48 49 islss s LSubSp K s Base K s z Base Scalar K a s b s z K a + K b s
51 eqid Scalar L = Scalar L
52 eqid Base Scalar L = Base Scalar L
53 eqid Base L = Base L
54 eqid + L = + L
55 eqid L = L
56 eqid LSubSp L = LSubSp L
57 51 52 53 54 55 56 islss s LSubSp L s Base L s z Base Scalar L a s b s z L a + L b s
58 43 50 57 3bitr4g φ s LSubSp K s LSubSp L
59 58 eqrdv φ LSubSp K = LSubSp L