Step |
Hyp |
Ref |
Expression |
1 |
|
lsspropd.b1 |
|
2 |
|
lsspropd.b2 |
|
3 |
|
lsspropd.w |
|
4 |
|
lsspropd.p |
|
5 |
|
lsspropd.s1 |
|
6 |
|
lsspropd.s2 |
|
7 |
|
lsspropd.p1 |
|
8 |
|
lsspropd.p2 |
|
9 |
|
simpll |
|
10 |
|
simprl |
|
11 |
|
simplr |
|
12 |
|
simprrl |
|
13 |
11 12
|
sseldd |
|
14 |
5
|
ralrimivva |
|
15 |
14
|
ad2antrr |
|
16 |
|
ovrspc2v |
|
17 |
10 13 15 16
|
syl21anc |
|
18 |
3
|
ad2antrr |
|
19 |
|
simprrr |
|
20 |
11 19
|
sseldd |
|
21 |
18 20
|
sseldd |
|
22 |
4
|
oveqrspc2v |
|
23 |
9 17 21 22
|
syl12anc |
|
24 |
6
|
oveqrspc2v |
|
25 |
9 10 13 24
|
syl12anc |
|
26 |
25
|
oveq1d |
|
27 |
23 26
|
eqtrd |
|
28 |
27
|
eleq1d |
|
29 |
28
|
anassrs |
|
30 |
29
|
2ralbidva |
|
31 |
30
|
ralbidva |
|
32 |
31
|
anbi2d |
|
33 |
32
|
pm5.32da |
|
34 |
|
3anass |
|
35 |
|
3anass |
|
36 |
33 34 35
|
3bitr4g |
|
37 |
1
|
sseq2d |
|
38 |
7
|
raleqdv |
|
39 |
37 38
|
3anbi13d |
|
40 |
2
|
sseq2d |
|
41 |
8
|
raleqdv |
|
42 |
40 41
|
3anbi13d |
|
43 |
36 39 42
|
3bitr3d |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
44 45 46 47 48 49
|
islss |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
|
eqid |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
51 52 53 54 55 56
|
islss |
|
58 |
43 50 57
|
3bitr4g |
|
59 |
58
|
eqrdv |
|