Metamath Proof Explorer


Theorem lsssra

Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses lsssra.w W = subringAlg R C
lsssra.a A = Base R
lsssra.s S = R 𝑠 B
lsssra.b φ B SubRing R
lsssra.c φ C SubRing S
Assertion lsssra φ B LSubSp W

Proof

Step Hyp Ref Expression
1 lsssra.w W = subringAlg R C
2 lsssra.a A = Base R
3 lsssra.s S = R 𝑠 B
4 lsssra.b φ B SubRing R
5 lsssra.c φ C SubRing S
6 3 subsubrg B SubRing R C SubRing S C SubRing R C B
7 6 biimpa B SubRing R C SubRing S C SubRing R C B
8 4 5 7 syl2anc φ C SubRing R C B
9 8 simpld φ C SubRing R
10 1 sralmod C SubRing R W LMod
11 9 10 syl φ W LMod
12 2 subrgss B SubRing R B A
13 4 12 syl φ B A
14 1 a1i φ W = subringAlg R C
15 8 simprd φ C B
16 15 13 sstrd φ C A
17 16 2 sseqtrdi φ C Base R
18 14 17 srabase φ Base R = Base W
19 2 18 eqtrid φ A = Base W
20 13 19 sseqtrd φ B Base W
21 4 elfvexd φ R V
22 2 3 13 15 21 resssra φ subringAlg S C = subringAlg R C 𝑠 B
23 1 oveq1i W 𝑠 B = subringAlg R C 𝑠 B
24 22 23 eqtr4di φ subringAlg S C = W 𝑠 B
25 eqid subringAlg S C = subringAlg S C
26 25 sralmod C SubRing S subringAlg S C LMod
27 5 26 syl φ subringAlg S C LMod
28 24 27 eqeltrrd φ W 𝑠 B LMod
29 eqid W 𝑠 B = W 𝑠 B
30 eqid Base W = Base W
31 eqid LSubSp W = LSubSp W
32 29 30 31 islss3 W LMod B LSubSp W B Base W W 𝑠 B LMod
33 32 biimpar W LMod B Base W W 𝑠 B LMod B LSubSp W
34 11 20 28 33 syl12anc φ B LSubSp W