Metamath Proof Explorer


Theorem lssssr

Description: Conclude subspace ordering from nonzero vector membership. ( ssrdv analog.) (Contributed by NM, 17-Aug-2014) (Revised by AV, 13-Jul-2022)

Ref Expression
Hypotheses lssssr.o 0 ˙ = 0 W
lssssr.s S = LSubSp W
lssssr.w φ W LMod
lssssr.t φ T V
lssssr.u φ U S
lssssr.1 φ x V 0 ˙ x T x U
Assertion lssssr φ T U

Proof

Step Hyp Ref Expression
1 lssssr.o 0 ˙ = 0 W
2 lssssr.s S = LSubSp W
3 lssssr.w φ W LMod
4 lssssr.t φ T V
5 lssssr.u φ U S
6 lssssr.1 φ x V 0 ˙ x T x U
7 simpr φ x = 0 ˙ x = 0 ˙
8 1 2 lss0cl W LMod U S 0 ˙ U
9 3 5 8 syl2anc φ 0 ˙ U
10 9 adantr φ x = 0 ˙ 0 ˙ U
11 7 10 eqeltrd φ x = 0 ˙ x U
12 11 a1d φ x = 0 ˙ x T x U
13 4 sseld φ x T x V
14 13 ancrd φ x T x V x T
15 14 adantr φ x 0 ˙ x T x V x T
16 eldifsn x V 0 ˙ x V x 0 ˙
17 16 6 sylan2br φ x V x 0 ˙ x T x U
18 17 exp32 φ x V x 0 ˙ x T x U
19 18 com23 φ x 0 ˙ x V x T x U
20 19 imp4b φ x 0 ˙ x V x T x U
21 15 20 syld φ x 0 ˙ x T x U
22 12 21 pm2.61dane φ x T x U
23 22 ssrdv φ T U