Metamath Proof Explorer


Theorem lsssssubg

Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsssubg.s S = LSubSp W
Assertion lsssssubg W LMod S SubGrp W

Proof

Step Hyp Ref Expression
1 lsssubg.s S = LSubSp W
2 1 lsssubg W LMod x S x SubGrp W
3 2 ex W LMod x S x SubGrp W
4 3 ssrdv W LMod S SubGrp W