Metamath Proof Explorer


Theorem lsssubg

Description: All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014)

Ref Expression
Hypothesis lsssubg.s S = LSubSp W
Assertion lsssubg W LMod U S U SubGrp W

Proof

Step Hyp Ref Expression
1 lsssubg.s S = LSubSp W
2 eqid Base W = Base W
3 2 1 lssss U S U Base W
4 3 adantl W LMod U S U Base W
5 1 lssn0 U S U
6 5 adantl W LMod U S U
7 eqid + W = + W
8 7 1 lssvacl W LMod U S x U y U x + W y U
9 8 anassrs W LMod U S x U y U x + W y U
10 9 ralrimiva W LMod U S x U y U x + W y U
11 eqid inv g W = inv g W
12 1 11 lssvnegcl W LMod U S x U inv g W x U
13 12 3expa W LMod U S x U inv g W x U
14 10 13 jca W LMod U S x U y U x + W y U inv g W x U
15 14 ralrimiva W LMod U S x U y U x + W y U inv g W x U
16 lmodgrp W LMod W Grp
17 16 adantr W LMod U S W Grp
18 2 7 11 issubg2 W Grp U SubGrp W U Base W U x U y U x + W y U inv g W x U
19 17 18 syl W LMod U S U SubGrp W U Base W U x U y U x + W y U inv g W x U
20 4 6 15 19 mpbir3and W LMod U S U SubGrp W