Metamath Proof Explorer


Theorem lssvancl1

Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 . Can it be used along with lspsnne1 , lspsnne2 to shorten this proof? (Contributed by NM, 14-May-2015)

Ref Expression
Hypotheses lssvancl.v V = Base W
lssvancl.p + ˙ = + W
lssvancl.s S = LSubSp W
lssvancl.w φ W LMod
lssvancl.u φ U S
lssvancl.x φ X U
lssvancl.y φ Y V
lssvancl.n φ ¬ Y U
Assertion lssvancl1 φ ¬ X + ˙ Y U

Proof

Step Hyp Ref Expression
1 lssvancl.v V = Base W
2 lssvancl.p + ˙ = + W
3 lssvancl.s S = LSubSp W
4 lssvancl.w φ W LMod
5 lssvancl.u φ U S
6 lssvancl.x φ X U
7 lssvancl.y φ Y V
8 lssvancl.n φ ¬ Y U
9 lmodabl W LMod W Abel
10 4 9 syl φ W Abel
11 1 3 lssel U S X U X V
12 5 6 11 syl2anc φ X V
13 eqid - W = - W
14 1 2 13 ablpncan2 W Abel X V Y V X + ˙ Y - W X = Y
15 10 12 7 14 syl3anc φ X + ˙ Y - W X = Y
16 15 adantr φ X + ˙ Y U X + ˙ Y - W X = Y
17 4 adantr φ X + ˙ Y U W LMod
18 5 adantr φ X + ˙ Y U U S
19 simpr φ X + ˙ Y U X + ˙ Y U
20 6 adantr φ X + ˙ Y U X U
21 13 3 lssvsubcl W LMod U S X + ˙ Y U X U X + ˙ Y - W X U
22 17 18 19 20 21 syl22anc φ X + ˙ Y U X + ˙ Y - W X U
23 16 22 eqeltrrd φ X + ˙ Y U Y U
24 8 23 mtand φ ¬ X + ˙ Y U