Metamath Proof Explorer


Theorem lssvnegcl

Description: Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014)

Ref Expression
Hypotheses lssvnegcl.s S = LSubSp W
lssvnegcl.n N = inv g W
Assertion lssvnegcl W LMod U S X U N X U

Proof

Step Hyp Ref Expression
1 lssvnegcl.s S = LSubSp W
2 lssvnegcl.n N = inv g W
3 eqid Base W = Base W
4 3 1 lssel U S X U X Base W
5 eqid Scalar W = Scalar W
6 eqid W = W
7 eqid 1 Scalar W = 1 Scalar W
8 eqid inv g Scalar W = inv g Scalar W
9 3 2 5 6 7 8 lmodvneg1 W LMod X Base W inv g Scalar W 1 Scalar W W X = N X
10 4 9 sylan2 W LMod U S X U inv g Scalar W 1 Scalar W W X = N X
11 10 3impb W LMod U S X U inv g Scalar W 1 Scalar W W X = N X
12 simp1 W LMod U S X U W LMod
13 simp2 W LMod U S X U U S
14 5 lmodring W LMod Scalar W Ring
15 14 3ad2ant1 W LMod U S X U Scalar W Ring
16 ringgrp Scalar W Ring Scalar W Grp
17 15 16 syl W LMod U S X U Scalar W Grp
18 eqid Base Scalar W = Base Scalar W
19 18 7 ringidcl Scalar W Ring 1 Scalar W Base Scalar W
20 15 19 syl W LMod U S X U 1 Scalar W Base Scalar W
21 18 8 grpinvcl Scalar W Grp 1 Scalar W Base Scalar W inv g Scalar W 1 Scalar W Base Scalar W
22 17 20 21 syl2anc W LMod U S X U inv g Scalar W 1 Scalar W Base Scalar W
23 simp3 W LMod U S X U X U
24 5 6 18 1 lssvscl W LMod U S inv g Scalar W 1 Scalar W Base Scalar W X U inv g Scalar W 1 Scalar W W X U
25 12 13 22 23 24 syl22anc W LMod U S X U inv g Scalar W 1 Scalar W W X U
26 11 25 eqeltrrd W LMod U S X U N X U