Metamath Proof Explorer


Theorem lssvnegcl

Description: Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014)

Ref Expression
Hypotheses lssvnegcl.s S = LSubSp W
lssvnegcl.n N = inv g W
Assertion lssvnegcl W LMod U S X U N X U

Proof

Step Hyp Ref Expression
1 lssvnegcl.s S = LSubSp W
2 lssvnegcl.n N = inv g W
3 eqid Base W = Base W
4 3 1 lssel U S X U X Base W
5 eqid Scalar W = Scalar W
6 eqid W = W
7 eqid 1 Scalar W = 1 Scalar W
8 eqid inv g Scalar W = inv g Scalar W
9 3 2 5 6 7 8 lmodvneg1 W LMod X Base W inv g Scalar W 1 Scalar W W X = N X
10 4 9 sylan2 W LMod U S X U inv g Scalar W 1 Scalar W W X = N X
11 10 3impb W LMod U S X U inv g Scalar W 1 Scalar W W X = N X
12 simp1 W LMod U S X U W LMod
13 simp2 W LMod U S X U U S
14 eqid Base Scalar W = Base Scalar W
15 5 lmodring W LMod Scalar W Ring
16 15 3ad2ant1 W LMod U S X U Scalar W Ring
17 16 ringgrpd W LMod U S X U Scalar W Grp
18 14 7 ringidcl Scalar W Ring 1 Scalar W Base Scalar W
19 16 18 syl W LMod U S X U 1 Scalar W Base Scalar W
20 14 8 17 19 grpinvcld W LMod U S X U inv g Scalar W 1 Scalar W Base Scalar W
21 simp3 W LMod U S X U X U
22 5 6 14 1 lssvscl W LMod U S inv g Scalar W 1 Scalar W Base Scalar W X U inv g Scalar W 1 Scalar W W X U
23 12 13 20 21 22 syl22anc W LMod U S X U inv g Scalar W 1 Scalar W W X U
24 11 23 eqeltrrd W LMod U S X U N X U