Step |
Hyp |
Ref |
Expression |
1 |
|
lssvs0or.v |
|
2 |
|
lssvs0or.t |
|
3 |
|
lssvs0or.f |
|
4 |
|
lssvs0or.k |
|
5 |
|
lssvs0or.o |
|
6 |
|
lssvs0or.s |
|
7 |
|
lssvs0or.w |
|
8 |
|
lssvs0or.u |
|
9 |
|
lssvs0or.x |
|
10 |
|
lssvs0or.a |
|
11 |
3
|
lvecdrng |
|
12 |
7 11
|
syl |
|
13 |
12
|
ad2antrr |
|
14 |
10
|
ad2antrr |
|
15 |
|
simpr |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
4 5 16 17 18
|
drnginvrl |
|
20 |
13 14 15 19
|
syl3anc |
|
21 |
20
|
oveq1d |
|
22 |
|
lveclmod |
|
23 |
7 22
|
syl |
|
24 |
23
|
ad2antrr |
|
25 |
4 5 18
|
drnginvrcl |
|
26 |
13 14 15 25
|
syl3anc |
|
27 |
9
|
ad2antrr |
|
28 |
1 3 2 4 16
|
lmodvsass |
|
29 |
24 26 14 27 28
|
syl13anc |
|
30 |
1 3 2 17
|
lmodvs1 |
|
31 |
24 27 30
|
syl2anc |
|
32 |
21 29 31
|
3eqtr3rd |
|
33 |
8
|
ad2antrr |
|
34 |
|
simplr |
|
35 |
3 2 4 6
|
lssvscl |
|
36 |
24 33 26 34 35
|
syl22anc |
|
37 |
32 36
|
eqeltrd |
|
38 |
37
|
ex |
|
39 |
38
|
necon1bd |
|
40 |
39
|
orrd |
|
41 |
40
|
orcomd |
|
42 |
|
oveq1 |
|
43 |
42
|
adantl |
|
44 |
|
eqid |
|
45 |
1 3 2 5 44
|
lmod0vs |
|
46 |
23 9 45
|
syl2anc |
|
47 |
44 6
|
lss0cl |
|
48 |
23 8 47
|
syl2anc |
|
49 |
46 48
|
eqeltrd |
|
50 |
49
|
adantr |
|
51 |
43 50
|
eqeltrd |
|
52 |
23
|
adantr |
|
53 |
8
|
adantr |
|
54 |
10
|
adantr |
|
55 |
|
simpr |
|
56 |
3 2 4 6
|
lssvscl |
|
57 |
52 53 54 55 56
|
syl22anc |
|
58 |
51 57
|
jaodan |
|
59 |
41 58
|
impbida |
|