Metamath Proof Explorer


Theorem lssvsubcl

Description: Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssvsubcl.m - ˙ = - W
lssvsubcl.s S = LSubSp W
Assertion lssvsubcl W LMod U S X U Y U X - ˙ Y U

Proof

Step Hyp Ref Expression
1 lssvsubcl.m - ˙ = - W
2 lssvsubcl.s S = LSubSp W
3 simpll W LMod U S X U Y U W LMod
4 eqid Base W = Base W
5 4 2 lssel U S X U X Base W
6 5 ad2ant2lr W LMod U S X U Y U X Base W
7 4 2 lssel U S Y U Y Base W
8 7 ad2ant2l W LMod U S X U Y U Y Base W
9 eqid + W = + W
10 eqid Scalar W = Scalar W
11 eqid W = W
12 eqid inv g Scalar W = inv g Scalar W
13 eqid 1 Scalar W = 1 Scalar W
14 4 9 1 10 11 12 13 lmodvsubval2 W LMod X Base W Y Base W X - ˙ Y = X + W inv g Scalar W 1 Scalar W W Y
15 3 6 8 14 syl3anc W LMod U S X U Y U X - ˙ Y = X + W inv g Scalar W 1 Scalar W W Y
16 10 lmodfgrp W LMod Scalar W Grp
17 3 16 syl W LMod U S X U Y U Scalar W Grp
18 eqid Base Scalar W = Base Scalar W
19 10 18 13 lmod1cl W LMod 1 Scalar W Base Scalar W
20 3 19 syl W LMod U S X U Y U 1 Scalar W Base Scalar W
21 18 12 grpinvcl Scalar W Grp 1 Scalar W Base Scalar W inv g Scalar W 1 Scalar W Base Scalar W
22 17 20 21 syl2anc W LMod U S X U Y U inv g Scalar W 1 Scalar W Base Scalar W
23 4 10 11 18 lmodvscl W LMod inv g Scalar W 1 Scalar W Base Scalar W Y Base W inv g Scalar W 1 Scalar W W Y Base W
24 3 22 8 23 syl3anc W LMod U S X U Y U inv g Scalar W 1 Scalar W W Y Base W
25 4 9 lmodcom W LMod X Base W inv g Scalar W 1 Scalar W W Y Base W X + W inv g Scalar W 1 Scalar W W Y = inv g Scalar W 1 Scalar W W Y + W X
26 3 6 24 25 syl3anc W LMod U S X U Y U X + W inv g Scalar W 1 Scalar W W Y = inv g Scalar W 1 Scalar W W Y + W X
27 simplr W LMod U S X U Y U U S
28 simprr W LMod U S X U Y U Y U
29 simprl W LMod U S X U Y U X U
30 10 18 9 11 2 lsscl U S inv g Scalar W 1 Scalar W Base Scalar W Y U X U inv g Scalar W 1 Scalar W W Y + W X U
31 27 22 28 29 30 syl13anc W LMod U S X U Y U inv g Scalar W 1 Scalar W W Y + W X U
32 26 31 eqeltrd W LMod U S X U Y U X + W inv g Scalar W 1 Scalar W W Y U
33 15 32 eqeltrd W LMod U S X U Y U X - ˙ Y U