Step |
Hyp |
Ref |
Expression |
1 |
|
lssvsubcl.m |
|
2 |
|
lssvsubcl.s |
|
3 |
|
simpll |
|
4 |
|
eqid |
|
5 |
4 2
|
lssel |
|
6 |
5
|
ad2ant2lr |
|
7 |
4 2
|
lssel |
|
8 |
7
|
ad2ant2l |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
4 9 1 10 11 12 13
|
lmodvsubval2 |
|
15 |
3 6 8 14
|
syl3anc |
|
16 |
10
|
lmodfgrp |
|
17 |
3 16
|
syl |
|
18 |
|
eqid |
|
19 |
10 18 13
|
lmod1cl |
|
20 |
3 19
|
syl |
|
21 |
18 12
|
grpinvcl |
|
22 |
17 20 21
|
syl2anc |
|
23 |
4 10 11 18
|
lmodvscl |
|
24 |
3 22 8 23
|
syl3anc |
|
25 |
4 9
|
lmodcom |
|
26 |
3 6 24 25
|
syl3anc |
|
27 |
|
simplr |
|
28 |
|
simprr |
|
29 |
|
simprl |
|
30 |
10 18 9 11 2
|
lsscl |
|
31 |
27 22 28 29 30
|
syl13anc |
|
32 |
26 31
|
eqeltrd |
|
33 |
15 32
|
eqeltrd |
|