Metamath Proof Explorer


Theorem lsw0

Description: The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018) (Proof shortened by AV, 2-May-2020)

Ref Expression
Assertion lsw0 W Word V W = 0 lastS W =

Proof

Step Hyp Ref Expression
1 lsw W Word V lastS W = W W 1
2 1 adantr W Word V W = 0 lastS W = W W 1
3 fvoveq1 W = 0 W W 1 = W 0 1
4 wrddm W Word V dom W = 0 ..^ W
5 1nn 1
6 nnnle0 1 ¬ 1 0
7 5 6 ax-mp ¬ 1 0
8 0re 0
9 1re 1
10 8 9 subge0i 0 0 1 1 0
11 7 10 mtbir ¬ 0 0 1
12 elfzole1 0 1 0 ..^ W 0 0 1
13 11 12 mto ¬ 0 1 0 ..^ W
14 eleq2 dom W = 0 ..^ W 0 1 dom W 0 1 0 ..^ W
15 13 14 mtbiri dom W = 0 ..^ W ¬ 0 1 dom W
16 ndmfv ¬ 0 1 dom W W 0 1 =
17 4 15 16 3syl W Word V W 0 1 =
18 3 17 sylan9eqr W Word V W = 0 W W 1 =
19 2 18 eqtrd W Word V W = 0 lastS W =