Metamath Proof Explorer


Theorem lswccats1

Description: The last symbol of a word concatenated with a singleton word is the symbol of the singleton word. (Contributed by AV, 6-Aug-2018) (Proof shortened by AV, 22-Oct-2018)

Ref Expression
Assertion lswccats1 W Word V S V lastS W ++ ⟨“ S ”⟩ = S

Proof

Step Hyp Ref Expression
1 simpl W Word V S V W Word V
2 s1cl S V ⟨“ S ”⟩ Word V
3 2 adantl W Word V S V ⟨“ S ”⟩ Word V
4 s1nz ⟨“ S ”⟩
5 4 a1i W Word V S V ⟨“ S ”⟩
6 lswccatn0lsw W Word V ⟨“ S ”⟩ Word V ⟨“ S ”⟩ lastS W ++ ⟨“ S ”⟩ = lastS ⟨“ S ”⟩
7 1 3 5 6 syl3anc W Word V S V lastS W ++ ⟨“ S ”⟩ = lastS ⟨“ S ”⟩
8 lsws1 S V lastS ⟨“ S ”⟩ = S
9 8 adantl W Word V S V lastS ⟨“ S ”⟩ = S
10 7 9 eqtrd W Word V S V lastS W ++ ⟨“ S ”⟩ = S