Metamath Proof Explorer


Theorem lswccats1fst

Description: The last symbol of a nonempty word concatenated with its first symbol is the first symbol. (Contributed by AV, 28-Jun-2018) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion lswccats1fst P Word V 1 P lastS P ++ ⟨“ P 0 ”⟩ = P ++ ⟨“ P 0 ”⟩ 0

Proof

Step Hyp Ref Expression
1 wrdsymb1 P Word V 1 P P 0 V
2 lswccats1 P Word V P 0 V lastS P ++ ⟨“ P 0 ”⟩ = P 0
3 1 2 syldan P Word V 1 P lastS P ++ ⟨“ P 0 ”⟩ = P 0
4 simpl P Word V 1 P P Word V
5 1 s1cld P Word V 1 P ⟨“ P 0 ”⟩ Word V
6 lencl P Word V P 0
7 elnnnn0c P P 0 1 P
8 7 biimpri P 0 1 P P
9 6 8 sylan P Word V 1 P P
10 lbfzo0 0 0 ..^ P P
11 9 10 sylibr P Word V 1 P 0 0 ..^ P
12 ccatval1 P Word V ⟨“ P 0 ”⟩ Word V 0 0 ..^ P P ++ ⟨“ P 0 ”⟩ 0 = P 0
13 4 5 11 12 syl3anc P Word V 1 P P ++ ⟨“ P 0 ”⟩ 0 = P 0
14 3 13 eqtr4d P Word V 1 P lastS P ++ ⟨“ P 0 ”⟩ = P ++ ⟨“ P 0 ”⟩ 0