Metamath Proof Explorer


Theorem lsws1

Description: The last symbol of a singleton word is its symbol. (Contributed by AV, 22-Oct-2018)

Ref Expression
Assertion lsws1 A V lastS ⟨“ A ”⟩ = A

Proof

Step Hyp Ref Expression
1 s1cl A V ⟨“ A ”⟩ Word V
2 s1len ⟨“ A ”⟩ = 1
3 lsw1 ⟨“ A ”⟩ Word V ⟨“ A ”⟩ = 1 lastS ⟨“ A ”⟩ = ⟨“ A ”⟩ 0
4 1 2 3 sylancl A V lastS ⟨“ A ”⟩ = ⟨“ A ”⟩ 0
5 s1fv A V ⟨“ A ”⟩ 0 = A
6 4 5 eqtrd A V lastS ⟨“ A ”⟩ = A