Database
REAL AND COMPLEX NUMBERS
Words over a set
Singleton words
lsws1
Next ⟩
eqs1
Metamath Proof Explorer
Ascii
Unicode
Theorem
lsws1
Description:
The last symbol of a singleton word is its symbol.
(Contributed by
AV
, 22-Oct-2018)
Ref
Expression
Assertion
lsws1
⊢
A
∈
V
→
lastS
⁡
〈“
A
”〉
=
A
Proof
Step
Hyp
Ref
Expression
1
s1cl
⊢
A
∈
V
→
〈“
A
”〉
∈
Word
V
2
s1len
⊢
〈“
A
”〉
=
1
3
lsw1
⊢
〈“
A
”〉
∈
Word
V
∧
〈“
A
”〉
=
1
→
lastS
⁡
〈“
A
”〉
=
〈“
A
”〉
⁡
0
4
1
2
3
sylancl
⊢
A
∈
V
→
lastS
⁡
〈“
A
”〉
=
〈“
A
”〉
⁡
0
5
s1fv
⊢
A
∈
V
→
〈“
A
”〉
⁡
0
=
A
6
4
5
eqtrd
⊢
A
∈
V
→
lastS
⁡
〈“
A
”〉
=
A