Metamath Proof Explorer


Theorem lt0neg1dd

Description: If a number is negative, its negative is positive. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses lt0neg1dd.1 φ A
lt0neg1dd.2 φ A < 0
Assertion lt0neg1dd φ 0 < A

Proof

Step Hyp Ref Expression
1 lt0neg1dd.1 φ A
2 lt0neg1dd.2 φ A < 0
3 1 lt0neg1d φ A < 0 0 < A
4 2 3 mpbid φ 0 < A