Metamath Proof Explorer


Theorem lt2addd

Description: Adding both side of two inequalities. Theorem I.25 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
lt2addd.4 φ D
lt2addd.5 φ A < C
lt2addd.6 φ B < D
Assertion lt2addd φ A + B < C + D

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 lt2addd.4 φ D
5 lt2addd.5 φ A < C
6 lt2addd.6 φ B < D
7 2 4 6 ltled φ B D
8 1 2 3 4 5 7 ltleaddd φ A + B < C + D