Metamath Proof Explorer
Description: Adding both side of two inequalities. Theorem I.25 of Apostol
p. 20. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
|
|
|
ltnegd.2 |
|
|
|
ltadd1d.3 |
|
|
|
lt2addd.4 |
|
|
|
lt2addd.5 |
|
|
|
lt2addd.6 |
|
|
Assertion |
lt2addd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
|
2 |
|
ltnegd.2 |
|
3 |
|
ltadd1d.3 |
|
4 |
|
lt2addd.4 |
|
5 |
|
lt2addd.5 |
|
6 |
|
lt2addd.6 |
|
7 |
2 4 6
|
ltled |
|
8 |
1 2 3 4 5 7
|
ltleaddd |
|