Metamath Proof Explorer


Theorem lt2addmuld

Description: If two real numbers are less than a third real number, the sum of the two real numbers is less than twice the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lt2addmuld.a φ A
lt2addmuld.b φ B
lt2addmuld.c φ C
lt2addmuld.altc φ A < C
lt2addmuld.bltc φ B < C
Assertion lt2addmuld φ A + B < 2 C

Proof

Step Hyp Ref Expression
1 lt2addmuld.a φ A
2 lt2addmuld.b φ B
3 lt2addmuld.c φ C
4 lt2addmuld.altc φ A < C
5 lt2addmuld.bltc φ B < C
6 1 2 3 3 4 5 lt2addd φ A + B < C + C
7 3 recnd φ C
8 7 2timesd φ 2 C = C + C
9 6 8 breqtrrd φ A + B < 2 C