Database
REAL AND COMPLEX NUMBERS
Integer sets
Simple number properties
lt2addmuld
Metamath Proof Explorer
Description: If two real numbers are less than a third real number, the sum of the
two real numbers is less than twice the third real number. (Contributed by Glauco Siliprandi , 11-Dec-2019)
Ref
Expression
Hypotheses
lt2addmuld.a
⊢ φ → A ∈ ℝ
lt2addmuld.b
⊢ φ → B ∈ ℝ
lt2addmuld.c
⊢ φ → C ∈ ℝ
lt2addmuld.altc
⊢ φ → A < C
lt2addmuld.bltc
⊢ φ → B < C
Assertion
lt2addmuld
⊢ φ → A + B < 2 ⁢ C
Proof
Step
Hyp
Ref
Expression
1
lt2addmuld.a
⊢ φ → A ∈ ℝ
2
lt2addmuld.b
⊢ φ → B ∈ ℝ
3
lt2addmuld.c
⊢ φ → C ∈ ℝ
4
lt2addmuld.altc
⊢ φ → A < C
5
lt2addmuld.bltc
⊢ φ → B < C
6
1 2 3 3 4 5
lt2addd
⊢ φ → A + B < C + C
7
3
recnd
⊢ φ → C ∈ ℂ
8
7
2timesd
⊢ φ → 2 ⁢ C = C + C
9
6 8
breqtrrd
⊢ φ → A + B < 2 ⁢ C