Metamath Proof Explorer


Theorem lt2halves

Description: A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006)

Ref Expression
Assertion lt2halves A B C A < C 2 B < C 2 A + B < C

Proof

Step Hyp Ref Expression
1 3simpa A B C A B
2 rehalfcl C C 2
3 2 2 jca C C 2 C 2
4 3 3ad2ant3 A B C C 2 C 2
5 lt2add A B C 2 C 2 A < C 2 B < C 2 A + B < C 2 + C 2
6 1 4 5 syl2anc A B C A < C 2 B < C 2 A + B < C 2 + C 2
7 recn C C
8 2halves C C 2 + C 2 = C
9 7 8 syl C C 2 + C 2 = C
10 9 breq2d C A + B < C 2 + C 2 A + B < C
11 10 3ad2ant3 A B C A + B < C 2 + C 2 A + B < C
12 6 11 sylibd A B C A < C 2 B < C 2 A + B < C