Metamath Proof Explorer


Theorem lt2halvesd

Description: A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses rehalfcld.1 φ A
lt2halvesd.2 φ B
lt2halvesd.3 φ C
lt2halvesd.4 φ A < C 2
lt2halvesd.5 φ B < C 2
Assertion lt2halvesd φ A + B < C

Proof

Step Hyp Ref Expression
1 rehalfcld.1 φ A
2 lt2halvesd.2 φ B
3 lt2halvesd.3 φ C
4 lt2halvesd.4 φ A < C 2
5 lt2halvesd.5 φ B < C 2
6 lt2halves A B C A < C 2 B < C 2 A + B < C
7 1 2 3 6 syl3anc φ A < C 2 B < C 2 A + B < C
8 4 5 7 mp2and φ A + B < C