Metamath Proof Explorer


Theorem lt2msq1

Description: Lemma for lt2msq . (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lt2msq1 A 0 A B A < B A A < B B

Proof

Step Hyp Ref Expression
1 simp1l A 0 A B A < B A
2 1 1 remulcld A 0 A B A < B A A
3 simp2 A 0 A B A < B B
4 3 1 remulcld A 0 A B A < B B A
5 3 3 remulcld A 0 A B A < B B B
6 simp1 A 0 A B A < B A 0 A
7 simp3 A 0 A B A < B A < B
8 1 3 7 ltled A 0 A B A < B A B
9 lemul1a A B A 0 A A B A A B A
10 1 3 6 8 9 syl31anc A 0 A B A < B A A B A
11 0red A 0 A B A < B 0
12 simp1r A 0 A B A < B 0 A
13 11 1 3 12 7 lelttrd A 0 A B A < B 0 < B
14 ltmul2 A B B 0 < B A < B B A < B B
15 1 3 3 13 14 syl112anc A 0 A B A < B A < B B A < B B
16 7 15 mpbid A 0 A B A < B B A < B B
17 2 4 5 10 16 lelttrd A 0 A B A < B A A < B B