Metamath Proof Explorer


Theorem lt2mul2div

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006)

Ref Expression
Assertion lt2mul2div A B 0 < B C D 0 < D A B < C D A D < C B

Proof

Step Hyp Ref Expression
1 recn C C
2 recn D D
3 mulcom C D C D = D C
4 1 2 3 syl2an C D C D = D C
5 4 oveq1d C D C D B = D C B
6 5 adantl B 0 < B C D C D B = D C B
7 2 ad2antll B 0 < B C D D
8 1 ad2antrl B 0 < B C D C
9 recn B B
10 9 adantr B 0 < B B
11 gt0ne0 B 0 < B B 0
12 10 11 jca B 0 < B B B 0
13 12 adantr B 0 < B C D B B 0
14 divass D C B B 0 D C B = D C B
15 7 8 13 14 syl3anc B 0 < B C D D C B = D C B
16 6 15 eqtrd B 0 < B C D C D B = D C B
17 16 adantrrr B 0 < B C D 0 < D C D B = D C B
18 17 adantll A B 0 < B C D 0 < D C D B = D C B
19 18 breq2d A B 0 < B C D 0 < D A < C D B A < D C B
20 simpll A B 0 < B C D 0 < D A
21 remulcl C D C D
22 21 adantrr C D 0 < D C D
23 22 adantl A B 0 < B C D 0 < D C D
24 simplr A B 0 < B C D 0 < D B 0 < B
25 ltmuldiv A C D B 0 < B A B < C D A < C D B
26 20 23 24 25 syl3anc A B 0 < B C D 0 < D A B < C D A < C D B
27 simpl B 0 < B B
28 27 11 jca B 0 < B B B 0
29 redivcl C B B 0 C B
30 29 3expb C B B 0 C B
31 28 30 sylan2 C B 0 < B C B
32 31 ancoms B 0 < B C C B
33 32 ad2ant2lr A B 0 < B C D 0 < D C B
34 simprr A B 0 < B C D 0 < D D 0 < D
35 ltdivmul A C B D 0 < D A D < C B A < D C B
36 20 33 34 35 syl3anc A B 0 < B C D 0 < D A D < C B A < D C B
37 19 26 36 3bitr4d A B 0 < B C D 0 < D A B < C D A D < C B