| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|
| 2 |
|
recn |
|
| 3 |
|
mulcom |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
4
|
oveq1d |
|
| 6 |
5
|
adantl |
|
| 7 |
2
|
ad2antll |
|
| 8 |
1
|
ad2antrl |
|
| 9 |
|
recn |
|
| 10 |
9
|
adantr |
|
| 11 |
|
gt0ne0 |
|
| 12 |
10 11
|
jca |
|
| 13 |
12
|
adantr |
|
| 14 |
|
divass |
|
| 15 |
7 8 13 14
|
syl3anc |
|
| 16 |
6 15
|
eqtrd |
|
| 17 |
16
|
adantrrr |
|
| 18 |
17
|
adantll |
|
| 19 |
18
|
breq2d |
|
| 20 |
|
simpll |
|
| 21 |
|
remulcl |
|
| 22 |
21
|
adantrr |
|
| 23 |
22
|
adantl |
|
| 24 |
|
simplr |
|
| 25 |
|
ltmuldiv |
|
| 26 |
20 23 24 25
|
syl3anc |
|
| 27 |
|
simpl |
|
| 28 |
27 11
|
jca |
|
| 29 |
|
redivcl |
|
| 30 |
29
|
3expb |
|
| 31 |
28 30
|
sylan2 |
|
| 32 |
31
|
ancoms |
|
| 33 |
32
|
ad2ant2lr |
|
| 34 |
|
simprr |
|
| 35 |
|
ltdivmul |
|
| 36 |
20 33 34 35
|
syl3anc |
|
| 37 |
19 26 36
|
3bitr4d |
|