Metamath Proof Explorer


Theorem lt2mul2divd

Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses lt2mul2divd.1 φ A
lt2mul2divd.2 φ B +
lt2mul2divd.3 φ C
lt2mul2divd.4 φ D +
Assertion lt2mul2divd φ A B < C D A D < C B

Proof

Step Hyp Ref Expression
1 lt2mul2divd.1 φ A
2 lt2mul2divd.2 φ B +
3 lt2mul2divd.3 φ C
4 lt2mul2divd.4 φ D +
5 2 rpregt0d φ B 0 < B
6 4 rpregt0d φ D 0 < D
7 lt2mul2div A B 0 < B C D 0 < D A B < C D A D < C B
8 1 5 3 6 7 syl22anc φ A B < C D A D < C B