Metamath Proof Explorer


Theorem lt2sub

Description: Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Assertion lt2sub A B C D A < C D < B A B < C D

Proof

Step Hyp Ref Expression
1 simpll A B C D A
2 simprl A B C D C
3 simplr A B C D B
4 ltsub1 A C B A < C A B < C B
5 1 2 3 4 syl3anc A B C D A < C A B < C B
6 simprr A B C D D
7 ltsub2 D B C D < B C B < C D
8 6 3 2 7 syl3anc A B C D D < B C B < C D
9 5 8 anbi12d A B C D A < C D < B A B < C B C B < C D
10 resubcl A B A B
11 10 adantr A B C D A B
12 2 3 resubcld A B C D C B
13 resubcl C D C D
14 13 adantl A B C D C D
15 lttr A B C B C D A B < C B C B < C D A B < C D
16 11 12 14 15 syl3anc A B C D A B < C B C B < C D A B < C D
17 9 16 sylbid A B C D A < C D < B A B < C D