Metamath Proof Explorer


Theorem lt2subd

Description: Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
lt2addd.4 φ D
lt2addd.5 φ A < C
lt2addd.6 φ B < D
Assertion lt2subd φ A D < C B

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 lt2addd.4 φ D
5 lt2addd.5 φ A < C
6 lt2addd.6 φ B < D
7 lt2sub A D C B A < C B < D A D < C B
8 1 4 3 2 7 syl22anc φ A < C B < D A D < C B
9 5 6 8 mp2and φ A D < C B