Metamath Proof Explorer


Theorem lt3addmuld

Description: If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lt3addmuld.a φ A
lt3addmuld.b φ B
lt3addmuld.c φ C
lt3addmuld.d φ D
lt3addmuld.altd φ A < D
lt3addmuld.bltd φ B < D
lt3addmuld.cltd φ C < D
Assertion lt3addmuld φ A + B + C < 3 D

Proof

Step Hyp Ref Expression
1 lt3addmuld.a φ A
2 lt3addmuld.b φ B
3 lt3addmuld.c φ C
4 lt3addmuld.d φ D
5 lt3addmuld.altd φ A < D
6 lt3addmuld.bltd φ B < D
7 lt3addmuld.cltd φ C < D
8 1 2 readdcld φ A + B
9 2re 2
10 9 a1i φ 2
11 10 4 remulcld φ 2 D
12 1 2 4 5 6 lt2addmuld φ A + B < 2 D
13 8 3 11 4 12 7 lt2addd φ A + B + C < 2 D + D
14 10 recnd φ 2
15 4 recnd φ D
16 14 15 adddirp1d φ 2 + 1 D = 2 D + D
17 2p1e3 2 + 1 = 3
18 17 a1i φ 2 + 1 = 3
19 18 oveq1d φ 2 + 1 D = 3 D
20 16 19 eqtr3d φ 2 D + D = 3 D
21 13 20 breqtrd φ A + B + C < 3 D