Metamath Proof Explorer


Theorem lt4addmuld

Description: If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lt4addmuld.a φ A
lt4addmuld.b φ B
lt4addmuld.c φ C
lt4addmuld.d φ D
lt4addmuld.e φ E
lt4addmuld.alte φ A < E
lt4addmuld.blte φ B < E
lt4addmuld.clte φ C < E
lt4addmuld.dlte φ D < E
Assertion lt4addmuld φ A + B + C + D < 4 E

Proof

Step Hyp Ref Expression
1 lt4addmuld.a φ A
2 lt4addmuld.b φ B
3 lt4addmuld.c φ C
4 lt4addmuld.d φ D
5 lt4addmuld.e φ E
6 lt4addmuld.alte φ A < E
7 lt4addmuld.blte φ B < E
8 lt4addmuld.clte φ C < E
9 lt4addmuld.dlte φ D < E
10 1 2 readdcld φ A + B
11 10 3 readdcld φ A + B + C
12 3re 3
13 12 a1i φ 3
14 13 5 remulcld φ 3 E
15 1 2 3 5 6 7 8 lt3addmuld φ A + B + C < 3 E
16 11 4 14 5 15 9 lt2addd φ A + B + C + D < 3 E + E
17 df-4 4 = 3 + 1
18 17 a1i φ 4 = 3 + 1
19 18 oveq1d φ 4 E = 3 + 1 E
20 13 recnd φ 3
21 5 recnd φ E
22 20 21 adddirp1d φ 3 + 1 E = 3 E + E
23 19 22 eqtr2d φ 3 E + E = 4 E
24 16 23 breqtrd φ A + B + C + D < 4 E