Metamath Proof Explorer


Theorem ltadd1

Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltadd1 ABCA<BA+C<B+C

Proof

Step Hyp Ref Expression
1 ltadd2 ABCA<BC+A<C+B
2 simp3 ABCC
3 2 recnd ABCC
4 simp1 ABCA
5 4 recnd ABCA
6 3 5 addcomd ABCC+A=A+C
7 simp2 ABCB
8 7 recnd ABCB
9 3 8 addcomd ABCC+B=B+C
10 6 9 breq12d ABCC+A<C+BA+C<B+C
11 1 10 bitrd ABCA<BA+C<B+C