Metamath Proof Explorer


Theorem ltadd1

Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltadd1 A B C A < B A + C < B + C

Proof

Step Hyp Ref Expression
1 ltadd2 A B C A < B C + A < C + B
2 simp3 A B C C
3 2 recnd A B C C
4 simp1 A B C A
5 4 recnd A B C A
6 3 5 addcomd A B C C + A = A + C
7 simp2 A B C B
8 7 recnd A B C B
9 3 8 addcomd A B C C + B = B + C
10 6 9 breq12d A B C C + A < C + B A + C < B + C
11 1 10 bitrd A B C A < B A + C < B + C