Metamath Proof Explorer


Theorem ltadd1d

Description: Addition to both sides of 'less than'. Theorem I.18 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
Assertion ltadd1d φ A < B A + C < B + C

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 ltadd1 A B C A < B A + C < B + C
5 1 2 3 4 syl3anc φ A < B A + C < B + C