Metamath Proof Explorer


Theorem ltadd1i

Description: Addition to both sides of 'less than'. Theorem I.18 of Apostol p. 20. (Contributed by NM, 21-Jan-1997)

Ref Expression
Hypotheses lt2.1 A
lt2.2 B
lt2.3 C
Assertion ltadd1i A < B A + C < B + C

Proof

Step Hyp Ref Expression
1 lt2.1 A
2 lt2.2 B
3 lt2.3 C
4 ltadd1 A B C A < B A + C < B + C
5 1 2 3 4 mp3an A < B A + C < B + C