Metamath Proof Explorer


Theorem ltadd2

Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltadd2 A B C A < B C + A < C + B

Proof

Step Hyp Ref Expression
1 axltadd A B C A < B C + A < C + B
2 oveq2 A = B C + A = C + B
3 2 a1i A B C A = B C + A = C + B
4 axltadd B A C B < A C + B < C + A
5 4 3com12 A B C B < A C + B < C + A
6 3 5 orim12d A B C A = B B < A C + A = C + B C + B < C + A
7 6 con3d A B C ¬ C + A = C + B C + B < C + A ¬ A = B B < A
8 simp3 A B C C
9 simp1 A B C A
10 8 9 readdcld A B C C + A
11 simp2 A B C B
12 8 11 readdcld A B C C + B
13 axlttri C + A C + B C + A < C + B ¬ C + A = C + B C + B < C + A
14 10 12 13 syl2anc A B C C + A < C + B ¬ C + A = C + B C + B < C + A
15 axlttri A B A < B ¬ A = B B < A
16 9 11 15 syl2anc A B C A < B ¬ A = B B < A
17 7 14 16 3imtr4d A B C C + A < C + B A < B
18 1 17 impbid A B C A < B C + A < C + B