Metamath Proof Explorer


Theorem ltadd2d

Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
letrd.3 φ C
Assertion ltadd2d φ A < B C + A < C + B

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 letrd.3 φ C
4 ltadd2 A B C A < B C + A < C + B
5 1 2 3 4 syl3anc φ A < B C + A < C + B