Metamath Proof Explorer


Theorem ltadd2i

Description: Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses lt.1 A
lt.2 B
lt.3 C
Assertion ltadd2i A < B C + A < C + B

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 lt.3 C
4 ltadd2 A B C A < B C + A < C + B
5 1 2 3 4 mp3an A < B C + A < C + B