Metamath Proof Explorer


Theorem ltaddneg

Description: Adding a negative number to another number decreases it. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ltaddneg A B A < 0 B + A < B

Proof

Step Hyp Ref Expression
1 0re 0
2 ltadd2 A 0 B A < 0 B + A < B + 0
3 1 2 mp3an2 A B A < 0 B + A < B + 0
4 recn B B
5 4 addid1d B B + 0 = B
6 5 adantl A B B + 0 = B
7 6 breq2d A B B + A < B + 0 B + A < B
8 3 7 bitrd A B A < 0 B + A < B