Metamath Proof Explorer


Theorem ltaddnegr

Description: Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021)

Ref Expression
Assertion ltaddnegr A B A < 0 A + B < B

Proof

Step Hyp Ref Expression
1 ltaddneg A B A < 0 B + A < B
2 recn B B
3 recn A A
4 addcom B A B + A = A + B
5 2 3 4 syl2anr A B B + A = A + B
6 5 breq1d A B B + A < B A + B < B
7 1 6 bitrd A B A < 0 A + B < B