Metamath Proof Explorer


Theorem ltaddpos2

Description: Adding a positive number to another number increases it. (Contributed by NM, 8-Apr-2005)

Ref Expression
Assertion ltaddpos2 A B 0 < A B < A + B

Proof

Step Hyp Ref Expression
1 ltaddpos A B 0 < A B < B + A
2 recn A A
3 recn B B
4 addcom A B A + B = B + A
5 2 3 4 syl2an A B A + B = B + A
6 5 breq2d A B B < A + B B < B + A
7 1 6 bitr4d A B 0 < A B < A + B