Metamath Proof Explorer


Theorem ltaddposd

Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
Assertion ltaddposd φ 0 < A B < B + A

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltaddpos A B 0 < A B < B + A
4 1 2 3 syl2anc φ 0 < A B < B + A